
Enactor.Headless
A tools-driven
engine for all
channels

©2019 Enactor Limited Produced December 2019 Page 01

About Headless Commerce

Headless Commerce - what do they mean?

Headless Commerce is a term used to describe when the front-end presentation
layers of applications, such as websites and Apps, are separate from the back-end and
share a common set of services and data-structures, all managed via APIs.

The “headless” aspect, i.e. an application with no User Interface, simply means that
there is no front-end that comes with the platform for customer interaction. The
application acts as a common layer accessed via web service calls from disparate
applications that rely on the application being at least part, if not all, of their back-end
functionality.

Why is this desirable?

Historically the most well-known web platforms in the market have had very tight
coupling of the front-end and back-end. This has meant that they have been poor at
facilitating bringing in other channels to market, even with the APIs that are available.

Tight-coupling also means that Retailers have not had the benefit of being able to
experiment with new channels on their own. In spite of the powerful capabilities
within web technologies being relatively easy to access, they are still dependent on
their supplier’s more monolithic web platforms in order to expedite process change.

This desire for increased flexibility of the front-end has also been compounded by the
rise in Single Page Applications. Most older style, monolithic web platforms have
come packaged with traditional Content Management Systems for delivering
multipage sites. But with the rise of agile JavaScript Frameworks for web UIs there is
a gradual shift away from CMS’ and Multipage frameworks altogether.

The result of this shift is a back-end accessible only through APIs, to better facilitate
the “plumbing” aspect of e-commerce. Services for elements such as the basket,
product, prices and imagery for example are now delivered via web service calls as
opposed to the internal workings of a web platform.

Headless Commerce enabling Unified Commerce

This Headless model enables a way of providing a platform for exceptional Unified
Commerce experiences. By having a common set of places and data-models to
execute commerce functions across all channels, consistency via all channels is much
easier to achieve. In addition, on the front-end there is more control over, and focus
on, the customer experience. With the focus shifted from selling to buying, it can be
about supporting how the customer wants to buy as a priority over and above how IT
infrastructure allows the retailer to sell.

©2019 Enactor Limited Produced December 2019 Page 02

Page 03

Enactor offering so much more….

©2019 Enactor Limited Produced December 2019

Manufacturing
3rd Party
Systems

All Channels

Merchandising Warehouse Product
Information

Microservice
Building

Tools

Enactor
Headless

Commerce

Enactor Microservices

Enactor Toolkit

REST API

API Layer

Configuration

Price

Application Flows Business Processes Enactor
Estate Manager

Point of Sale E-Commerce
Mobile

Point of Sale
Self

Service
Customer

Device
Store
Stock

Store
Manager

Product Promotions Baskets Orders Inventory Loyalty &
Rewards

Customer Single
Sign-on

At Enactor we know it’s not enough to just have APIs that maintain lists of software
entities, that share many of the same names as microservices, causing confusion for
example around including lists of products, prices, orders etc.

Headless Commerce is very much about delivering genuine functionality to the
business, crucial at this level when it comes to large scale, complex retail operations.
After all, software is much more than just a database and UI. A good example of
business value created with a rich, functional microservices layer lies in the area of
promotions.

Typical promotions engines can’t keep up with requirements that change and flex
depending on consumer behaviour. When a retailer has thousands of SKUs, and
many more thousands of purchase combinations impacted by hundreds of product
promotions, a strong configurability around the e-commerce layer is crucial. In
practice this could mean that promotions are dynamically managed and assigned to
a transaction in the front end, to provide the best possible price for the customer
based on all the options available.

When the above is multiplied across thousands of transactions, it becomes clear why
the functionality at the front end is more important than just simply “passing” lists of
information between the front end and the back end via an API. If the latter were the
case, the processing speed would slow to a crawl during business periods such as
black Friday.

Tooling for Microservices is critical

Much more than just a database and APIs

Enactor has been building applications with “microservices” for many years – before
the term even existed. We know that microservices do provide flexibility, but they still
require a layer of tooling in order to manipulate them in order to get the most from
them. As you can see from our architecture the groups of microservices listed are
themselves made-up of smaller microservices, connected together and managed by
our various tools.

©2019 Enactor Limited Produced December 2019 Page 04

How the Microservice tooling works

In Enactor there are literally thousands of
microservices – probably more than any other
platform of its kind. That’s because the
Framework enforces an incredibly granular level
of microservice wrapping. Each Java class is
automatically wrapped as a microservice so that
it can be invoked either locally or remotely over
a network.

The Framework enforces that each microservice
defines its inputs, outputs and outcomes in
invocation. When building applications we refer
to each one as an “Action”. All of them are
inherently re-useable and, on-created, are
stored in our resource library.

Super-granular Microservices

In order to build applications, we stitch these small microservices together into what
we call “Processes”. Each process can be remotely and locally invoked over a network
and are all therefore microservices in themselves. Therefore all Enactor products
whether a; Headless microservice such as the basket service, distributed applications
such as the point-of-sale, or central tools including Enactor Estate Manager, have all
been created in this way.

Micro-Process based Applications

©2019 Enactor Limited Produced December 2019 Page 05

Much Richer and more flexible than
“Black-boxes”

In a Headless microservices architecture there are groups of services and APIs which
provide the back-bone to the entire commerce architecture. Typical Headless
Commerce providers will simply offer a collection of services, with the key elements
being: Product, Prices, Promotions, Customer, Order etc.

But to other platforms these web services are simply black boxes. They either offer
little functionality or internally struggle with limited application architectures. Major
enterprise retailers don’t choose black-box natured systems for large-scale
mission-critical systems so why should Headless Commerce be any different?

Purely because the Enactor Microservice Architecture is so granular, and the process
driven nature of it, the flexibility of microservices is driven to within Headless Services
as well as outside of it.

Headless Commerce and our Microservices

What’s important to remember is that the Enactor platform also brings genuine
functional richness. Every function is a microservice, meaning that all of our elements
are available as a service. The Enactor platform is inherently richer in functionality
than most on the market and each group of functions in Enactor is also inherently
configurable.

The primary benefits of this approach are; complete enablement of unified
commerce, ability to support large scale processing of very complex processing and
the ability to change business processes quickly without hard coding.

Functionality and configurability

©2019 Enactor Limited Produced December 2019 Page 06

