
Enactor Training Course
Web Connector and React POS



Confidential Enactor Limited 2021

Web Connector and React POS

Introduction to the Web 
Connector
- Architecture
- How to use the Web 

Connector

Enactor React POS
- Architecture
- Customising the React POS

Integration with External Web 
Pages



Confidential Enactor Limited 2021

What is the Enactor Web Connector?

A JavaScript library that allows you to interact with an Enactor 
Application Process Runtime

Allows reuse of application level logic that may have been 
developed for a Point-of-Sale in other channels:
- Take advantage of a Java back-end in your web-application
- Doesn’t make any assumption on the technology in the UI layer
- Doesn’t require the development of an additional REST service 

layer

Helps promote a clean separation between View logic (in the 
Browser) and Controller logic (in the Application Process)



Confidential Enactor Limited 2021

Enactor Web Connector

The web page may be hosted on an external web site, or could be 
“bundled” with the Enactor POS

Provides the full power of the Enactor POS
- Peripheral integration, including card readers and printers
- Native support for the Enactor Basket and Promotion Engines
- All Enactor Application Process are available for use

Allows you to move Rest service invocation to the Application 
layer, out of the View layer if desired
- May be suitable for sensitive APIs that you do not want to make 

available publicly on the internet



Confidential Enactor Limited 2021

Architecture of the Enactor Web Connector



Confidential Enactor Limited 2021

Enactor Web Connector API

The API for the Enactor Web Connector is separated into three 
areas:
- Web Connector Configuration API

This is used to configure how the Web Connector should talk to 
the server-side web socket

- Web Connector Manager API
This is use to manage Web Connector instances

- Web Connector API
The API for interacting with the connected Application Process



Confidential Enactor Limited 2021

Configuration API

This offers a “fluent” or “builder” style pattern for preparing the 
configuration needed to connect to the server-side web socket:

- withBridgeHostEndpoint(hostURL)
The URL hosting the web socket

- withMessageResourceId(messageBase, isDefault)
A default message resource that the web connector should use 
(other message resources can be resolved as needed)

- withBridgeEventHandler(eventName, callback)
Register a callback handler for a Web Connector Event



Confidential Enactor Limited 2021

Manager API

This API allows the application to create a new Web Connector:

- createBridge(config, callback, autoConnect)
Call to establish a new bridge to the Web Connector, supplying a 
configuration object prepared by the Web Connector Configuration 
API

The callback will be invoked once the bridge has been established

The autoConnect flag controls if the connection to the server should 
be immediately established, or if only the necessary object structures 
should be prepared

- getBridge()
Locate and return any existing instance of the Web Connector



Confidential Enactor Limited 2021

Connector API

This is the main API for the Web Connector:

- getPromptData(name, callback)
Asks the server-side to supply some data held by the current Prompt

- sendEvent(event, data, eventHandlers)
Send an event to the server-side, potentially with some data
The event handlers will be called if any matched events are raised while 
the event is being handled

- getResource(resourceType, resourceURI, resourceResolvedCallback)
Ask the Web Connector to return a resource that is available in the server-
side application



Confidential Enactor Limited 2021

Connector API (cont.)

- testPrivilege(privilegeId, callback)
Check if the “user” has a particular privilege assigned to them. The callback
will be supplied the result of the authorisation check

- resolveExpressionForPage(pageId, expression, callback)
Asks the server to resolve an expression. This is useful where there is some 
dynamic data available on the server that is hard to pass through as 
prompt data

- registerForViewEvent(eventName, callback)
Allows the UI to be notified when the Application Process receives an 
Event

- getViewData(dataName, callback)
Asks the server-side to supply some “view data” that it is holding



Confidential Enactor Limited 2021

Connector API (cont.)
The Web Connector also provides a number of properties that describe the current 
state of the server-side Application Process:

- page
An object structure that holds details about the current prompt being “displayed” 
on the server-side

- bridgeType
A string that can allow the HTML to change its behaviour based on the type of 
environment it is running in (iOS / Android / Swing)

- theme
A string that describes what “Theme” has been configured in the POS Terminal for 
this device

- locale
An ISO locale code that describes the locale of the signed-on user



Confidential Enactor Limited 2021

Enactor React POS



Confidential Enactor Limited 2020

React POS Architecture



Confidential Enactor Limited 2020

Architecture



Confidential Enactor Limited 2021

React POS – Swing Thick

Full Screen
Browser

React App

Enactor Application Processes

Prompts

Prompt 
Renderer

Data 
Processor

JSON



Confidential Enactor Limited 2021

React POS – Android / iOS

Thin Client

Enactor Thin Server

Prompts

Prompt 
Renderer

Data 
Processor

Thin Server
Socket

XML wrapped JSON

React App



Confidential Enactor Limited 2021

React POS – Web POS

Enactor Thin Server

Prompts

Prompt 
Renderer

Data 
Processor

Thin Server
Socket

Web Server

Web Socket XML wrapped JSON

index.js



Confidential Enactor Limited 2021

Data Processors

Data Processors are used for 
preparing the data needed by 
the React Application

They can be used to augment 
the data available in an 
Application Process

They also support converting 
data from the user interface 
into a format usable by the 
application

Prompt

Application Process

Prompt 
Renderer

Outbound 
Data 

Processor

Inbound Data 
Processor

React Application

React 
Prompt



Confidential Enactor Limited 2021

React POS Architecture

index.js
React Prompt 

Renderer

PosRoutes

Containers

Components

R
ea

ct
 P

ro
m

p
ts

Redux 
State Store

Reducers

Actions

Enactor Web Connector



Confidential Enactor Limited 2021

Routing

In a typical React app, a react-
router is used for routing.

We use our own route resolving 
mechanism; we maintain the 
route mappings in our 
components in the PosRoutes
root module. 

The root component that 
handles this is the 
PromptRenderer. 



Confidential Enactor Limited 2021

Customising the React POS

Enactor React POS applications can be customised using the 
following:

- Stylesheets
All elements are styled using a stylesheet. You can load your own 
stylesheet to override the standard Enactor styling

- Base Component
A simple React component independent of the POS. These are 
building blocks that other React components can be built from

- Page
A page is a component that manages the overall layout for a prompt 
from the POS

- Widget
A React component that renders a part of a prompt



Confidential Enactor Limited 2020

Stylesheet Theming



Confidential Enactor Limited 2021

Customising Base Components

The default Base Components are exported using the 
EnactorDefaultBaseComponentsMap, this should be used as a 
basis for your own component maps when you are customising 
the Enactor React POS:

import { EnactorDefaultBaseComponentsMap } from 
"@enactor/react-pos";

import MenuButton from 
"../components/Overrides/BaseComponents/MenuButton"

const DemoBaseComponentsMap = {
"MenuButton": MenuButton

};

export default Object.assign({}, 
EnactorDefaultBaseComponentsMap, DemoBaseComponentsMap);



Confidential Enactor Limited 2021

React Standard Widgets

Enactor React POS uses a number of widgets to build the user 
interface:

- Connected Input (Text, Drop Down, Checkbox, Calendar)
- Buttons
- Onscreen Keyboard
- Table View
- Image
- Resolvable Message
- Formatted Amount



Confidential Enactor Limited 2021

Customising Widgets

Widgets can be customised by supplying a custom 
componentsMap when the EnactorProvider is created, for 
example:

You only need to define the components you want to override; 
any components you do not provide an override for will use the 
default widget

const MyCustomComponentsMap = {
"Header": MyCustomerHeader

};

const EnactorProvider = ({
verbose = false,
componentsMap = MyCustomComponentsMap,
children,
appContext

}) => {
...

}



Confidential Enactor Limited 2021

Development Tools

The React POS runs using the Chromium rendering engine. 

As a result, you can use the standard Chrome developer tools to 
investigate the structure of the React POS from within the POS 
itself

You can also remotely connect a full browser to the React POS at 
the URL:

http://localhost:9222/



Confidential Enactor Limited 2021

Integration with External Web 
Pages



Confidential Enactor Limited 2021

Integration with External Web Pages

Using the Web Connector, you can take full advantage of the 
running POS application from your Web Site

You can detect if you are running in a POS, and if so change the 
web site behaviour

For example, if a product is added to the “basket”, when you are 
running in the POS you can add the item to the POS basket itself, 
rather than the web basket.



Confidential Enactor Limited 2021

Using the Web Connector in a Web Page

Enactor provides examples that 
demonstrate how to use the 
Web Connector in your own 
Web Pages in our Confluence 
pages

This can allow you to embed 
pages from your standard e-
commerce website in the POS 
and then integrate them so that 
you can update the POS basket



Confidential Enactor Limited 2021

Using the Web Connector in a Web Page

To allow a web page to easily detect if it is being run on a POS 
device, Enactor will add a string into the User-Agent header:
- JavaFX or Enactor-Chromium

Indicates the Swing POS is running the page
- Enactor-Android

Indicates the Android Thin Client is running the page
- Enactor-iOS

Indicates the iOS Thin Client is running the page



Q & A


